Low Spin Four-co-ordinated Chromium Nitrosyl Dialkylamides and Alkoxides

By D. C. Bradley* and C. W. Newing (Department of Chemistry, Queen Mary College, Mile End Road, London, E.1)

Summary Some diamagnetic nitrosyl chromium dialkylamides and alkoxides have been prepared containing four-co-ordinated chromium(II).

Previous work¹ showed that bulky ligands would constrain chromium to co-ordination numbers of three or four, and

of nitric oxide on $LiCr(OBu^t)_4^1$ whilst from the $Bu^tOH-Cr(NO)(NPr_2^t)_3$ reaction some $Cr(NO)(NPr_2^t)(OBu^t)_2$ was isolated. The properties of these compounds may be understood formally in terms of NO^+ bonded to Cr^{II} in a four-co-ordinated covalent complex having local C_3^v symmetry. An 18-electron valency group may be achieved

Compound			Colour	Volatility (sublimation temp.) at 10 ⁻⁴ mm.Hg)	NO stretching frequency (cm ⁻¹)
$Cr(NO)(NPr_2^i)_3$			Orange	75°	1641
Cr(NO)(2,6-dimethylpiperidide) ₃			Brown	90°	1673
$Cr(NO)(NPr_2^1)(OBu^t)_2$			Orange	52° (m.p. 61—62)	1683
$Cr(NO)[N(SiMe_3)_2]_3$			Deep purple	110°	1698
$Cr(NO)(OBu^t)_{\mathfrak{g}}$			Orange-red	40° (m.p. 62—63)	1707
$Cr(NO)(OPr^{i})_{3}$			Red	90° (m.p. 108—110)	1720

X-ray structural determination² confirmed that in the trigonal complexes $M[N(SiMe_3)_2]_3$ (M=Cr and Fe) there is little room for additional ligands. We have now found that trisdialkylamido-chromium(III) compounds CrL_3 [$L=NPr_2^i$, $N(SiMe_3)_2$, and 2,6-dimethylpiperidide] react with nitric oxide forming coloured diamagnetic mononitrosyls $Cr(NO)L_3$ (see Table) which are soluble in organic solvents and can be sublimed *in vacuo*. These compounds were characterized by elemental analyses and mass (all gave parent molecular ions), n.m.r., i.r., and electronic spectra. Their chemical stability was further demonstrated by the substitution of dialkylamido-groups by t-butoxide or isopropoxide without loss of nitric oxide. The tris-t-butoxide $Cr(NO)(OBu^t)_3$ was also obtained by the action

by π -electron donation from the three dialkylamido-nitrogens to chromium whilst the CrNO system should be stabilized by π -electron donation from d^4 -chromium (d_{xz}, d_{yz}) to the degenerate antibonding π^* orbitals of NO+. On this basis increased ligand (L) \rightarrow chromium π -donation should lower the NO stretching frequency and the data in the Table indicate the following order of π -donor ability:—

$$\mathrm{NPr_2^1} > 2,6$$
-dimethylpiperidide $> \mathrm{N(SiMe_3)_2} >$
 $\mathrm{OBu^t} > \mathrm{OPr^1}.$

The position of $N(SiMe_3)_2$ in this series is indicative of delocalization of the nitrogen lone pair into vacant silicon d-orbitals and this ligand may also act as a π -acceptor in

competition with NO⁺. The NO frequency in Cr(NO)- $(NPr_2^i)(OBu^t)_2$ is close to the weighted average (1685 cm⁻¹) of $Cr(NO)(NPr_2^i)_3$ and $Cr(NO)(OBu^t)_3$. The isopropoxide $Cr(NO)(OPr^i)_3$ gave n.m.r. and mass spectral data indicative of some dimerization which is consistent with its relatively low volatility.

The monomeric species Cr(NO)L₃ represents an important

new class of transition metal compound and suggests that isoelectronic species containing other metals and diatomic ligands (e.g. CO, CN⁻, N₂ etc.) may be stabilized by bulky dialkylamido- or alkoxo-ligands.

We thank the Owens-Illinois Company of Toledo, Ohio for financial support.

(Received, January 1st, 1970; Com. 004.)

¹ E. C. Alyea, J. S. Basi, D. C. Bradley, and M. H. Chisholm, Chem. Comm., 1968, 495.

² D. C. Bradley, M. B. Hursthouse, and P. F. Rodesiler, Chem. Comm., 1969, 14.